By Topic

Continuous Attractors of Lotka–Volterra Recurrent Neural Networks With Infinite Neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiali Yu ; Inst. for Infocomm Res., Agency for Sci. Technol. & Res., Singapore, Singapore ; Zhang Yi ; Jiliu Zhou

Continuous attractors of Lotka-Volterra recurrent neural networks (LV RNNs) with infinite neurons are studied in this brief. A continuous attractor is a collection of connected equilibria, and it has been recognized as a suitable model for describing the encoding of continuous stimuli in neural networks. The existence of the continuous attractors depends on many factors such as the connectivity and the external inputs of the network. A continuous attractor can be stable or unstable. It is shown in this brief that a LV RNN can possess multiple continuous attractors if the synaptic connections and the external inputs are Gussian-like in shape. Moreover, both stable and unstable continuous attractors can coexist in a network. Explicit expressions of the continuous attractors are calculated. Simulations are employed to illustrate the theory.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 10 )