Cart (Loading....) | Create Account
Close category search window
 

Measuring Complexity of Fetal Cortical Surface From MR Images Using 3-D Modified Box-Counting Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kuo-Kai Shyu ; Dept. of Electr. Eng., Nat. Central Univ., Chungli, Taiwan ; Yu-Te Wu ; Tzong-Rong Chen ; Hui-Yun Chen
more authors

Although fractal analyses of adult human brain complexity have been performed for several years, the use of fractal dimension (FD) to measure complexity of the developing fetal cortical surface has not been extensively investigated. This study attempts to measure the complexity of the developing fetal cortical surface using the concept of FD. As has been done by others, the commonly used box-counting (BC) method was herein extended from 2-D to 3-D to quantify the FD of fetal cortical complexity. The primary theoretical contribution of this work is the modification of the 3-D BC method using a local FD measure to yield an accurate FD that elucidates the fractal characteristics of the cortical surface. The proposed 3-D modified BC (MBC) method was then adopted to estimate the FD to measure the complexity of the cortical surface of 32 normal and six test fetal brains at a gestational age (GA) of 27-37 weeks. The results for normal brains reveal that the increase in cortical complexity is correlated with the GA of the fetus. Observations of test brains indicate that the twins and cortical dysplasia are associated with lower FD than that of normal fetuses. These results suggest that the proposed 3-D MBC method is an effective means of measuring the complexity of the fetal cortical surface.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.