By Topic

Switching Frequency Reduction Using Model Predictive Direct Current Control for High-Power Voltage Source Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthias Preindl ; Power Electronic Systems Laboratory, Swiss Federal Institute of Technology (ETH) Zurich , Zurich, Switzerland ; Erik Schaltz ; Paul Thogersen

In this paper, a novel current control approach called model predictive direct current control (MPDCC) is presented. The controller takes into account the discrete states of the voltage source inverter (VSI), and the current errors are predicted for each sampling period. Voltage vectors are selected by a graph algorithm, whereby the most appropriate vector is chosen based on an optimization criterion. However, this depends on whether the state of the system is transient or steady. In the first case, the current error should be minimized as fast as possible in order to obtain fast dynamics. In the latter one, the VSI switching behavior is optimized since the switching losses account for a large amount of the total converter losses in high-power drive systems. MPDCC has been developed for a general neutral-point isolated resistive-inductive load with an internal voltage source. For demonstration, the presented control strategy has been implemented on a small-scale permanent-magnet synchronous machine drive system with a two-level VSI. This new approach has several advantages. The most important one is that the switching frequency is reduced up to 70% compared to linear control combined with pulsewidth modulation. Second, MPDCC obtains fast dynamic responses, which are already known from, e.g., direct torque control.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:58 ,  Issue: 7 )