By Topic

Brain–Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Battiti, R. ; Dipt. di Ing. e Scienza dell''Inf., Univ. di Trento, Trento, Italy ; Passerini, A.

The centrality of the decision maker (DM) is widely recognized in the multiple criteria decision-making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of reactive search optimization (RSO) for evolutionary interactive multiobjective optimization. RSO follows to the paradigm of “learning while optimizing,” through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. User judgments of couples of solutions are used to build robust incremental models of the user utility function, with the objective to reduce the cognitive burden required from the DM to identify a satisficing solution. The technique of support vector ranking is used together with a k-fold cross-validation procedure to select the best kernel for the problem at hand, during the utility function training procedure. Experimental results are presented for a series of benchmark problems.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:14 ,  Issue: 5 )