By Topic

Adaptive Correction to Array Coefficients Through Dithering and Near-Field Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Janaswamy, R. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Gupta, D.V. ; Schaubert, D.H.

Adaptive correction of the excitation coefficients of a phased array achieved through dithering the magnitudes and phases of the element coefficients and sensing the fields through a near-zone probe is demonstrated by considering a linear array. Knowledge of the reference signal generated by the desired array at the near-zone probe is assumed. Deviations in the coefficients of the actual array from the desired array are corrected adaptively and simultaneously by means of a gradient based algorithm. Requirements for the algorithm to converge, its performance with and without a receiver noise and the effect of the dither parameters are studied. The effect of element mutual coupling on the performance of the array is also demonstrated by considering an array of half-wave dipoles.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 11 )