By Topic

A Jitter-Optimized Differential 40-Gbit/s Transimpedance Amplifier in SiGe BiCMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Christian Knochenhauer ; Chair for Circuit Design and Network Theory, Technical University of Dresden, Dresden, Germany ; Stefan Hauptmann ; J. Christoph Scheytt ; Frank Ellinger

This paper studies the jitter performance at the input of the transimpedance amplifier (TIA) in a communication system based on multimode optical fibers. A method is shown to analyze and effectively reduce data-dependent jitter by proper choice of the TIA input resistance and the use of multiple feedback techniques. A 40-Gbit/s TIA in 0.25-μm BiCMOS with fT of up to 180 GHz is presented to demonstrate the efficiency of the jitter analysis. It shows 6 kΩ (75.5 dBΩ) transimpedance gain, 37.6-GHz bandwidth, open eyes, and less than 0.6-ps root mean square jitter at 40 Gbit/s, as well as best-in-class power consumption and noise performance.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 10 )