By Topic

Tunable Lattice-Form Mach–Zehnder Interferometer for Arbitrary Binary Code Generation at 40 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Samadi, P. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; Kostko, I.A. ; Jain, A. ; Shia, B.
more authors

We use the direct temporal domain approach to design spectrally periodic optical filters for pulse repetition rate multiplication (PRRM) with envelope shaping. In particular, we demonstrate a tunable lattice-form Mach-Zehnder interferometer using Silica-based planar lightwave circuit (PLC) for arbitrary 4-bit binary amplitude code generation at 40 GHz and to increase the repetition rate of a 10 GHz input pulse train to 20 GHz or 40 GHz. In addition to PRRM and envelope shaping, the device also has the capability of arbitrary phase coding.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 21 )