By Topic

Fourier Series-Based Bidirectional Propagation Algorithm With Adaptive Spatial Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ctyroky, J. ; Inst. of Photonics & Electron. AS CR, Prague, Czech Republic ; Kwiecien, P. ; Richter, I.

Recently we described the implementation of complex coordinate transformation as boundary conditions into a bidirectional eigenmode expansion propagation algorithm based on Fourier series expansion for modeling optical field distribution in waveguide devices. In this communication we report on the implementation of an additional coordinate transformation known as adaptive spatial resolution into this algorithm. It helps significantly reduce the number of expansion terms needed to reach required accuracy especially for photonics structures containing layers of very different thicknesses and/or optical properties, e.g., metal layers.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 20 )