Cart (Loading....) | Create Account
Close category search window

Temperature-Aware NBTI Modeling and the Impact of Standby Leakage Reduction Techniques on Circuit Performance Degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu Wang ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Hong Luo ; Ku He ; Rong Luo
more authors

As technology scales, Negative Bias Temperature Instability (NBTI), which causes temporal performance degradation in digital circuits by affecting PMOS threshold voltage, is emerging as one of the major circuit reliability concerns. In this paper, we first investigate the impact of NBTI on PMOS devices and propose a temporal performance degradation model that considers the temperature variation between active and standby mode. We then discuss the resemblance between NBTI and leakage mechanisms, and find out that the impact of input vector and internal node on leakage and NBTI is different; hence, leakage and NBTI should be optimized simultaneously. Based on this, we study the impact of standby leakage reduction techniques (including input vector control and sleep transistor insertion) on circuit performance degradation considering active and standby temperature differences. We demonstrate the potential mitigation of the circuit performance degradation by these techniques.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:8 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.