By Topic

Temperature-Aware NBTI Modeling and the Impact of Standby Leakage Reduction Techniques on Circuit Performance Degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu Wang ; Tsinghua University, Beijing ; Hong Luo ; Ku He ; Rong Luo
more authors

As technology scales, Negative Bias Temperature Instability (NBTI), which causes temporal performance degradation in digital circuits by affecting PMOS threshold voltage, is emerging as one of the major circuit reliability concerns. In this paper, we first investigate the impact of NBTI on PMOS devices and propose a temporal performance degradation model that considers the temperature variation between active and standby mode. We then discuss the resemblance between NBTI and leakage mechanisms, and find out that the impact of input vector and internal node on leakage and NBTI is different; hence, leakage and NBTI should be optimized simultaneously. Based on this, we study the impact of standby leakage reduction techniques (including input vector control and sleep transistor insertion) on circuit performance degradation considering active and standby temperature differences. We demonstrate the potential mitigation of the circuit performance degradation by these techniques.

Published in:

IEEE Transactions on Dependable and Secure Computing  (Volume:8 ,  Issue: 5 )