By Topic

Mining Discriminative Patterns for Classifying Trajectories on Road Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jae-Gil Lee ; Dept. of Knowledge Service Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Jiawei Han ; Xiaolei Li ; Hong Cheng

Classification has been used for modeling many kinds of data sets, including sets of items, text documents, graphs, and networks. However, there is a lack of study on a new kind of data, trajectories on road networks. Modeling such data is useful with the emerging GPS and RFID technologies and is important for effective transportation and traffic planning. In this work, we study methods for classifying trajectories on road networks. By analyzing the behavior of trajectories on road networks, we observe that, in addition to the locations where vehicles have visited, the order of these visited locations is crucial for improving classification accuracy. Based on our analysis, we contend that (frequent) sequential patterns are good feature candidates since they preserve this order information. Furthermore, when mining sequential patterns, we propose to confine the length of sequential patterns to ensure high efficiency. Compared with closed sequential patterns, these partial (i.e., length-confined) sequential patterns allow us to significantly improve efficiency almost without losing accuracy. In this paper, we present a framework for frequent pattern-based classification for trajectories on road networks. Our comparative study over a broad range of classification approaches demonstrates that our method significantly improves accuracy over other methods in some synthetic and real trajectory data.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 5 )