By Topic

A Machine Learning Approach for Identifying Disease-Treatment Relations in Short Texts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frunza, O. ; Sch. of Inf. Technol. & Eng. (SITE), Univ. of Ottawa, Ottawa, ON, Canada ; Inkpen, D. ; Tran, T.

The Machine Learning (ML) field has gained its momentum in almost any domain of research and just recently has become a reliable tool in the medical domain. The empirical domain of automatic learning is used in tasks such as medical decision support, medical imaging, protein-protein interaction, extraction of medical knowledge, and for overall patient management care. ML is envisioned as a tool by which computer-based systems can be integrated in the healthcare field in order to get a better, more efficient medical care. This paper describes a ML-based methodology for building an application that is capable of identifying and disseminating healthcare information. It extracts sentences from published medical papers that mention diseases and treatments, and identifies semantic relations that exist between diseases and treatments. Our evaluation results for these tasks show that the proposed methodology obtains reliable outcomes that could be integrated in an application to be used in the medical care domain. The potential value of this paper stands in the ML settings that we propose and in the fact that we outperform previous results on the same data set.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 6 )