By Topic

Finding Correlated Biclusters from Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen-Hui Yang ; Sun Yat-Sen University, Guangzhou ; Dao-Qing Dai ; Hong Yan

Extracting biologically relevant information from DNA microarrays is a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been proposed for the analysis of gene expression data, but when analyzing the large and heterogeneous collections of gene expression data, conventional clustering algorithms often cannot produce a satisfactory solution. Biclustering algorithm has been presented as an alternative approach to standard clustering techniques to identify local structures from gene expression data set. These patterns may provide clues about the main biological processes associated with different physiological states. In this paper, different from existing bicluster patterns, we first introduce a more general pattern: correlated bicluster, which has intuitive biological interpretation. Then, we propose a novel transform technique based on singular value decomposition so that identifying correlated-bicluster problem from gene expression matrix is transformed into two global clustering problems. The Mixed-Clustering algorithm and the Lift algorithm are devised to efficiently produce δ-corBiclusters. The biclusters obtained using our method from gene expression data sets of multiple human organs and the yeast Saccharomyces cerevisiae demonstrate clear biological meanings.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:23 ,  Issue: 4 )