Cart (Loading....) | Create Account
Close category search window
 

Answering Frequent Probabilistic Inference Queries in Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaoxu Song ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Lei Chen ; Yu, J.X.

Existing solutions for probabilistic inference queries mainly focus on answering a single inference query, but seldom address the issues of efficiently returning results for a sequence of frequent queries, which is more popular and practical in many real applications. In this paper, we mainly study the computation caching and sharing among a sequence of inference queries in databases. The clique tree propagation (CTP) algorithm is first introduced in databases for probabilistic inference queries. We use the materialized views to cache the intermediate results of the previous inference queries, which might be shared with the following queries, and consequently reduce the time cost. Moreover, we take the query workload into account to identify the frequently queried variables. To optimize probabilistic inference queries with CTP, we cache these frequent query variables into the materialized views to maximize the reuse. Due to the existence of different query plans, we present heuristics to estimate costs and select the optimal query plan. Finally, we present the experimental evaluation in relational databases to illustrate the validity and superiority of our approaches in answering frequent probabilistic inference queries.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.