By Topic

Learning Semi-Riemannian Metrics for Semisupervised Feature Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Zhang ; The Chinese University of Hong Kong, Hong Kong ; Zhouchen Lin ; Xiaoou Tang

Discriminant feature extraction plays a central role in pattern recognition and classification. Linear Discriminant Analysis (LDA) is a traditional algorithm for supervised feature extraction. Recently, unlabeled data have been utilized to improve LDA. However, the intrinsic problems of LDA still exist and only the similarity among the unlabeled data is utilized. In this paper, we propose a novel algorithm, called Semisupervised Semi-Riemannian Metric Map (S3RMM), following the geometric framework of semi Riemannian manifolds. S3RMM maximizes the discrepancy of the separability and similarity measures of scatters formulated by using semi-Riemannian metric tensors. The metric tensor of each sample is learned via semisupervised regression. Our method can also be a general framework for proposing new semisupervised algorithms, utilizing the existing discrepancy-criterion-based algorithms. The experiments demonstrated on faces and handwritten digits show that S3RMM is promising for semisupervised feature extraction.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:23 ,  Issue: 4 )