Cart (Loading....) | Create Account
Close category search window

MOSAICS: Multiplexed optimal signal acquisition involving compressed sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Satyanarayana, J.V. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; Ramakrishnan, A.G.

It is possible to sample signals at sub-Nyquist rate and still be able to reconstruct them with reasonable accuracy provided they exhibit local Fourier sparsity. Underdetermined systems of equations, which arise out of undersampling, have been solved to yield sparse solutions using compressed sensing algorithms. In this paper, we propose a framework for real time sampling of multiple analog channels with a single A/D converter achieving higher effective sampling rate. Signal reconstruction from noisy measurements on two different synthetic signals has been presented. A scheme of implementing the algorithm in hardware has also been suggested.

Published in:

Signal Processing and Communications (SPCOM), 2010 International Conference on

Date of Conference:

18-21 July 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.