By Topic

Despeckling of medical ultrasound images using sparse representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deka, B. ; Dept. of Electron. & Commun. Eng., Indian Inst. of Technol. Guwahati, Guwahati, India ; Bora, P.K.

Recently there has been a growing interest in the sparse representation of signals. Particularly, many new multi-scale transforms have been proposed in this direction. Instead of using fixed transforms such as wavelets, curvelets etc., an alternative way is to train a dictionary from the image itself. This paper presents a novel despeckling scheme for medical ultrasound images using such a sparse and redundant representation. It is shown that the proposed algorithm can be used effectively for removal of multiplicative speckle noise by introducing a simple preprocessing stage before an adaptive dictionary is learned from the image patches (called atoms) for sparse representation. This learning process, called the K-SVD, is efficiently performed using an Orthogonal Matching Pursuit (OMP) and a Singular Value Decomposition (SVD). Results are evaluated both on US images and artificially speckled photographic images.

Published in:

Signal Processing and Communications (SPCOM), 2010 International Conference on

Date of Conference:

18-21 July 2010