By Topic

Differences between intra- and extra-cavity pulse time structure in a hole-coupled free-electron laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Weits, H.H. ; FOM Inst. for Plasma Phys., Nieuwegein, Netherlands ; Knippels, G.M.H. ; van Werkhoven, G.H.C. ; Oepts, D.
more authors

In the strong-slippage regime of a free-electron laser, the optical pulse inside the resonator is composed of a series of subsequently growing and decaying subpulses due to a limit-cycle oscillation. The picosecond time structure of the outcoupled pulses can be quite different from that of the intracavity pulse, in case of outcoupling through a hole and for specific resonator parameters. This is demonstrated by autocorrelation measurements and corroborated by simulations

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 3 )