By Topic

Control-flow versus data-flow-based scheduling: combining both approaches in an adaptive scheduling system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. A. Bergamaschi ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; S. Raje ; I. Nair ; L. Trevillyan

As high-level synthesis techniques gain acceptance among designers, it is important to be able to provide a robust system which can handle large designs in short execution times, producing high-quality results. Scheduling is one of the most complex tasks in high-level synthesis, and although many algorithms exist for solving the scheduling problem, it remains a main source of inefficiency by either not producing high-quality results, not taking into account realistic design requirements, or requiring unacceptable execution times. One of the main problems in scheduling is the dichotomy between control and data. Many algorithms to date have been able to provide scheduling solutions by looking only at either the data part or the control part of the design. This has been done in order to simplify the problem; however, it has resulted in many algorithms unable to handle efficiently large designs with complex control and data functionality. This paper presents algorithms for combining dataflow and control-flow techniques into a robust scheduling system. The main characteristics of this system are as follows: 1) it uses path-based techniques for efficient handling of control and mutual exclusiveness (for resource sharing), 2) it allows operation reordering and parallelism extraction within the context of path-based scheduling, 3) it contains a control partitioning algorithm for design space exploration as well as for reducing the number of control paths, and 4) it combines the above algorithms into an adaptive scheduling system which is capable of trading optimality for execution time on-the-fly. Results involving billions of paths are presented and analyzed.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:5 ,  Issue: 1 )