By Topic

Network-Coding Multicast Networks With QoS Guarantees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuanzhe Xuan ; Dept. of Electr. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China ; Chin-Tau Lea

It is well known that without admission control, network congestion is bound to occur. However, to implement admission control is difficult in IP-based networks, which are constructed out of the end-to-end principle, and semantics of most major signaling protocols can only be interpreted at the edge of the network. Even if routers can perform admission control internally, the path computation and the state updating activities required for setting up and tearing down each flow will overwhelm the network. A new QoS architecture, called a nonblocking network, has been proposed recently, and it requires no internal admission control and can still offer hard QoS guarantees. In this architecture, as long as each edge node admits not more than a specified amount of traffic, the network will never experience link congestion. For multicast networks, the main problem with this approach is low throughput. Conventional tree-based multicast routing algorithms lead to a throughput so low that the nonblocking concept is rendered impractical. In this paper, we show how network coding can solve this problem. We demonstrate that a nonblocking unicast network and a multicast network share the same optimal paths, and that a nonblocking multicast network with network coding can admit the same amount of traffic as a nonblocking unicast network. The above conclusions apply to explicit-routing (MPLS-like) and shortest-path routing (IP-like) networks.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 1 )