By Topic

A Cellular Automaton Approach to Spatial Electric Load Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Edgar Manuel Carreno ; Faculdade de Engenharia de Ilha Solteira, Departamento de Engenharia Elétrica, UNESP Univ. Estadual Paulista, Brazil ; Rodrigo Mazo Rocha ; Antonio Padilha-Feltrin

A method for spatial electric load forecasting using a reduced set of data is presented. The method uses a cellular automata model for the spatiotemporal allocation of new loads in the service zone. The density of electrical load for each of the major consumer classes in each cell is used as the current state, and a series of update rules are established to simulate S-growth behavior and the complementarity among classes. The most important features of this method are good performance, few data and the simplicity of the algorithm, allowing for future scalability. The approach is tested in a real system from a mid-size city showing good performance. Results are presented in future preference maps.

Published in:

IEEE Transactions on Power Systems  (Volume:26 ,  Issue: 2 )