By Topic

A Characterization of the Performance of a MEMS Gyroscope in Acoustically Harsh Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Dean, R.N. ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA ; Castro, S.T. ; Flowers, G.T. ; Roth, G.
more authors

Microelectromechanical systems (MEMS) gyroscopes are typically smaller and less expensive than their macroscale counterparts. For this reason, they are being used in many new applications, including in harsh environments. It has been well documented that the performance of unprotected MEMS gyroscopes can be deleteriously affected by exposure to mechanical shock or high-frequency vibrations. The results of this investigation experimentally demonstrate that MEMS gyroscopes are also susceptible to high-power high-frequency acoustic noise when acoustic energy frequency components are close to the resonating frequency of the gyroscope's proof mass. Additionally, due to microfabrication tolerances and the resulting differences between otherwise identical devices, there can be significant differences in the acoustically sensitive bandwidth between otherwise identical MEMS gyroscopes. This phenomenon is characterized for the ADXRS300 MEMS gyroscope.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 7 )