By Topic

Transceiver Design for Dual-Hop Nonregenerative MIMO-OFDM Relay Systems Under Channel Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chengwen Xing ; Sch. of Inf. & Electron., Beijing Inst. of Technol., Beijing, China ; Shaodan Ma ; Yik-Chung Wu ; Tung-Sang Ng

In this paper, linear transceiver design for dual-hop nonregenerative [amplify-and-forward (AF)] MIMO-OFDM systems under channel estimation errors is investigated. Second order moments of channel estimation errors in the two hops are first deduced. Then based on the Bayesian framework, joint design of linear forwarding matrix at the relay and equalizer at the destination under channel estimation errors is proposed to minimize the total mean-square-error (MSE) of the output signal at the destination. The optimal designs for both correlated and uncorrelated channel estimation errors are considered. The relationship with existing algorithms is also disclosed. Moreover, this design is extended to the joint design involving source precoder design. Simulation results show that the proposed design outperforms the design based on estimated channel state information only.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 12 )