Cart (Loading....) | Create Account
Close category search window

Clustered Nyström Method for Large Scale Manifold Learning and Dimension Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kai Zhang ; Life Sci. Div., Lawrence Berkeley Nat. Lab., Berkeley, CA, USA ; Kwok, J.T.

Kernel (or similarity) matrix plays a key role in many machine learning algorithms such as kernel methods, manifold learning, and dimension reduction. However, the cost of storing and manipulating the complete kernel matrix makes it infeasible for large problems. The Nyström method is a popular sampling-based low-rank approximation scheme for reducing the computational burdens in handling large kernel matrices. In this paper, we analyze how the approximating quality of the Nyström method depends on the choice of landmark points, and in particular the encoding powers of the landmark points in summarizing the data. Our (non-probabilistic) error analysis justifies a “clustered Nyström method” that uses the k-means clustering centers as landmark points. Our algorithm can be applied to scale up a wide variety of algorithms that depend on the eigenvalue decomposition of kernel matrix (or its variant), such as kernel principal component analysis, Laplacian eigenmap, spectral clustering, as well as those involving kernel matrix inverse such as least-squares support vector machine and Gaussian process regression. Extensive experiments demonstrate the competitive performance of our algorithm in both accuracy and efficiency.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.