By Topic

A Self-Organizing Fuzzy Neural Network Based on a Growing-and-Pruning Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Honggui Han ; Coll. of Electron. & Control Eng., Beijing Univ. of Technol., Beijing, China ; Junfei Qiao

A novel growing-and-pruning (GP) approach is proposed, which optimizes the structure of a fuzzy neural network (FNN). This GP-FNN is based on radial basis function neurons, which have center and width vectors. The structure-learning phase and the parameter-training phase are performed concurrently. The structure-learning approach relies on the sensitivity analysis of the output. A set of fuzzy rules can be inserted or reduced during the learning process. The parameter-training algorithm is implemented using a supervised gradient decent method. The convergence of the GP-FNN-learning process is also discussed in this paper. The proposed method effectively generates a fuzzy neural model with a highly accurate and compact structure. Simulation results demonstrate that the proposed GP-FNN has a self-organizing ability, which can determine the structure and parameters of the FNN automatically. The algorithm performs better than some other existing self-organizing FNN algorithms.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 6 )