By Topic

A Positive and Unlabeled Learning Algorithm for One-Class Classification of Remote-Sensing Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenkai Li ; Sch. of Eng., Univ. of California at Merced, Merced, CA, USA ; Qinghua Guo ; Elkan, C.

In remote-sensing classification, there are situations when users are only interested in classifying one specific land-cover type, without considering other classes. These situations are referred to as one-class classification. Traditional supervised learning is inefficient for one-class classification because it requires all classes that occur in the image to be exhaustively assigned labels. In this paper, we investigate a new positive and unlabeled learning (PUL) algorithm, applying it to one-class classifications of two scenes of a high-spatial-resolution aerial photograph. The PUL algorithm trains a classifier on positive and unlabeled data, estimates the probability that a positive training sample has been labeled, and generates binary predictions for test samples using an adjusted threshold. Experimental results indicate that the new algorithm provides high classification accuracy, outperforming the biased support-vector machine (SVM), one-class SVM, and Gaussian domain descriptor methods. The advantages of the new algorithm are that it can use unlabeled data to help build classifiers, and it requires only a small set of positive data to be labeled by hand. Therefore, it can significantly reduce the effort of assigning labels to training data without losing predictive accuracy.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 2 )