By Topic

Dopant-Segregated Schottky Source/Drain FinFET With a NiSi FUSI Gate and Reduced Leakage Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sung-Jin Choi ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Jin-Woo Han ; Sungho Kim ; Moon, Dong-Il
more authors

Enhanced Dopant-segregated Schottky-barrier (DSSB) FinFETs combined with a fully silicided (FUSI) gate were fabricated via single-step Ni-silicidation. Both workfunction control of the gate and a lowered effective SB-height in the source/drain junctions are simultaneously achieved by the dopant-segregated silicidation process. Moreover, the leakage current was significantly reduced with the aid of deep source/drain implantation. Therefore, it can be expected that a DSSB device with a FUSI gate have several advantages as both a logic and nonvolatile memory device. First, for a logic device, it can provide low parasitic resistance and a tunable threshold voltage. Second, for a nonvolatile memory device, the increased workfunction due to the FUSI gate can enhance the erasing characteristics by suppressing the back tunneling of electrons from the gate side as well as the programming characteristics.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 11 )