By Topic

High Efficiency Wideband Aperture-Coupled Stacked Patch Antennas Assembled Using Millimeter Thick Micromachined Polymer Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pavuluri, S.K. ; Sch. of Eng. & Phys. Sci., HeriotWatt Univ., Edinburgh, UK ; Changhai Wang ; Sangster, A.J.

Micromachined stacked patch antenna devices with high efficiency and wideband characteristics are reported. Polymer based fabrication and assembly processes have been developed in order to produce the stacked suspended antenna devices. Millimeter thick micromachined SU8 based polymer rings are used to create air gaps between the patches and the microwave substrate for optimized high efficiency operation. Thin film liquid crystal polymer (LCP) and polyimide substrates are used to support the radiating and parasitic patch elements. The polymer rings also form cavities to protect the patches and substrate from moisture and dust. The antenna structures are fabricated in layers and then assembled to obtain 3D devices. The antenna devices have been designed using an electromagnetic simulation package. The aperture coupled devices are impedance matched for wideband operation. RF measurements show wideband operation of the devices and the results are in good agreement with that of simulation. Typical gain and bandwidths are 7.8 dBi and 39% for a microstrip fed antenna device while they are 7.6 dBi and 44% for a CPW fed device. The predicted efficiency from the results of simulation is above 97% for the antenna devices.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 11 )