By Topic

Direct current offset controller for transformerless single-phase photovoltaic grid-connected inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bowtell, L. ; Fac. of Eng. & Surveying, Univ. of Southern Queensland, Toowoomba, QLD, Australia ; Ahfock, A.

Limitation of direct current (DC) injection into the alternating current (AC) network is an important operational requirement for grid-connected photovoltaic (PV) systems. One way to ensure that this requirement is met is to use a power transformer as interface to the AC network. But this adds costs, mass, volume and power losses. In a transformerless system, the inverter forming part of the PV system has to be operated so that the DC content in its output current is below the specified limits. Ideally, there should be no DC at the output of the inverter, but in practice, in the absence of special measures, a small amount of DC current is present. A technique for elimination of the DC-offset is proposed. It is based on the sensing of the DC-offset voltage at the output of the inverter. A sensor output is used to drive a feedback system designed to control the operation of the inverter so that the DC-offset is forced to stay within the acceptable limits. A mathematical model for the DC-offset controller is derived. A design procedure, based on the model, is proposed for the controller. The results of tests performed on a system of 1 kW nominal rating provide validation for the mathematical model.

Published in:

Renewable Power Generation, IET  (Volume:4 ,  Issue: 5 )