By Topic

Optimal sizing of distributed generation by using quantum-inspired evolutionary programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yasin, Z.M. ; Univ. Teknol. MARA, Shah Alam, Malaysia ; Rahman, T.K.A. ; Musirin, I. ; Rahim, S.R.A.

The paper proposes a novel evolutionary programming inspired by quantum mechanics, called a quantum-inspired evolutionary programming (QIEP). The proposed algorithm consists of three levels, quantum individuals, quantum groups and quantum universes. The proposed algorithm is implemented to determine the optimal sizing of distributed generation (DG) for loss minimization at the optimal location. The location of the distributed generation was identified using the sensitivity indices. In order to demonstrate its performance, comparative studies are performed with conventional evolutionary programming in terms of loss minimization and computation time. The installation of single DG and multiple DG also presented and the results shows better improvement in terms of loss minimization and voltage profile. The proposed study was conducted on the IEEE 69-bus test system.

Published in:

Power Engineering and Optimization Conference (PEOCO), 2010 4th International

Date of Conference:

23-24 June 2010