Cart (Loading....) | Create Account
Close category search window

Computer aided abnormality detection for microscopy images of cervical tissue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yue Cui ; Sch. of Design, Commun. & IT, Univ. of Newcastle, Callaghan, NSW, Australia ; Jin, J.S. ; Park, M. ; Suhuai Luo
more authors

Cervical cancer is the second most common malignancy among women worldwide, if it is detected in early stage, cure rate is relatively high. Computer aided abnormality detection for cervical smear is developed to assist medical experts to handle the microscopy images, examine cell abnormalities and diagnose dyskaryosis. The microscopy images of cells in cervix uteri are stained by the tumor marker Ki-67, so that the abnormal nuclei present brown while normal ones are bluish. Segmentation is the most important and difficult task to calculate the ratio of abnormal nuclei to all nuclei. In order to achieve accurate segmentation of nuclei, we propose a multi-level segmentation approach for abnormality identification in microscopy images. First level segmentation aims to partition abnormal (stained) nuclei regions and all nuclei regions. Because of under-segmentation after first level segmentation, second level segmentation is applied to further partition the clustered nuclei. In order to classify touching regions of clustered nuclei and separate regions of single nucleus, relevant meaningful features are extracted from regions of interest. Consequently all the nuclei regions are separated and in conjunction with the abnormal nuclei regions in the first level segmentation, the abnormality i.e. ratio of abnormal nuclei to all nuclei is obtained. Experimental results indicate that our method achieved an accuracy of 93.55% and 95.8% in term of abnormal nuclei and all nuclei respectively for identification of abnormalities. Our proposed method produces a satisfactory segmentation.

Published in:

Complex Medical Engineering (CME), 2010 IEEE/ICME International Conference on

Date of Conference:

13-15 July 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.