By Topic

Depth of anesthesia control using Internal Model Control techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anna, S. ; Fac. of Eng. & Surveying, Univ. of Southern Queensland, Toowoomba, QLD, Australia ; Peng Wen

The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the pharmacokinetics (PK), and pharmacodynamics (PD). These uncertainties may affect the stability of the closed loop control system. This paper aims at developing predictive controllers using Internal Model Control technique. This study develops patient dose-response models and to provide an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated compared with traditional PID controller and the performance is confirmed in our simulation.

Published in:

Complex Medical Engineering (CME), 2010 IEEE/ICME International Conference on

Date of Conference:

13-15 July 2010