By Topic

A Laplacian Approach to Multi-Oriented Text Detection in Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Palaiahnakote Shivakumara ; National University of Singapore, Singapore ; Trung Quy Phan ; Chew Lim Tan

In this paper, we propose a method based on the Laplacian in the frequency domain for video text detection. Unlike many other approaches which assume that text is horizontally-oriented, our method is able to handle text of arbitrary orientation. The input image is first filtered with Fourier-Laplacian. K-means clustering is then used to identify candidate text regions based on the maximum difference. The skeleton of each connected component helps to separate the different text strings from each other. Finally, text string straightness and edge density are used for false positive elimination. Experimental results show that the proposed method is able to handle graphics text and scene text of both horizontal and nonhorizontal orientation.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 2 )