Cart (Loading....) | Create Account
Close category search window
 

Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation, Extensions, and Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Sun ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ, USA ; Shuiwang Ji ; Jieping Ye

Canonical Correlation Analysis (CCA) is a well-known technique for finding the correlations between two sets of multidimensional variables. It projects both sets of variables onto a lower-dimensional space in which they are maximally correlated. CCA is commonly applied for supervised dimensionality reduction in which the two sets of variables are derived from the data and the class labels, respectively. It is well-known that CCA can be formulated as a least-squares problem in the binary class case. However, the extension to the more general setting remains unclear. In this paper, we show that under a mild condition which tends to hold for high-dimensional data, CCA in the multilabel case can be formulated as a least-squares problem. Based on this equivalence relationship, efficient algorithms for solving least-squares problems can be applied to scale CCA to very large data sets. In addition, we propose several CCA extensions, including the sparse CCA formulation based on the 1-norm regularization. We further extend the least-squares formulation to partial least squares. In addition, we show that the CCA projection for one set of variables is independent of the regularization on the other set of multidimensional variables, providing new insights on the effect of regularization on CCA. We have conducted experiments using benchmark data sets. Experiments on multilabel data sets confirm the established equivalence relationships. Results also demonstrate the effectiveness and efficiency of the proposed CCA extensions.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.