Cart (Loading....) | Create Account
Close category search window
 

Action Recognition from One Example

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hae Jong Seo ; Univ. of California Santa Cruz, Santa Cruz, CA, USA ; Milanfar, P.

We present a novel action recognition method based on space-time locally adaptive regression kernels and the matrix cosine similarity measure. The proposed method uses a single example of an action as a query to find similar matches. It does not require prior knowledge about actions, foreground/background segmentation, or any motion estimation or tracking. Our method is based on the computation of novel space-time descriptors from the query video which measure the likeness of a voxel to its surroundings. Salient features are extracted from said descriptors and compared against analogous features from the target video. This comparison is done using a matrix generalization of the cosine similarity measure. The algorithm yields a scalar resemblance volume, with each voxel indicating the likelihood of similarity between the query video and all cubes in the target video. Using nonparametric significance tests by controlling the false discovery rate, we detect the presence and location of actions similar to the query video. High performance is demonstrated on challenging sets of action data containing fast motions, varied contexts, and complicated background. Further experiments on the Weizmann and KTH data sets demonstrate state-of-the-art performance in action categorization.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.