By Topic

A Max-Flow-Based Approach to the Identification of Protein Complexes Using Protein Interaction and Microarray Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianxing Feng ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Rui Jiang ; Tao Jiang

The emergence of high-throughput technologies leads to abundant protein-protein interaction (PPI) data and microarray gene expression profiles, and provides a great opportunity for the identification of novel protein complexes using computational methods. By combining these two types of data, we propose a novel Graph Fragmentation Algorithm (GFA) for protein complex identification. Adapted from a classical max-flow algorithm for finding the (weighted) densest subgraphs, GFA first finds large (weighted) dense subgraphs in a protein-protein interaction network, and then, breaks each such subgraph into fragments iteratively by weighting its nodes appropriately in terms of their corresponding log-fold changes in the microarray data, until the fragment subgraphs are sufficiently small. Our tests on three widely used protein-protein interaction data sets and comparisons with several latest methods for protein complex identification demonstrate the strong performance of our method in predicting novel protein complexes in terms of its specificity and efficiency. Given the high specificity (or precision) that our method has achieved, we conjecture that our prediction results imply more than 200 novel protein complexes.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 3 )