Cart (Loading....) | Create Account
Close category search window
 

Computing a Smallest Multilabeled Phylogenetic Tree from Rooted Triplets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guillemot, S. ; Inst. Gaspard Monge, Univ. Paris-Est, Marne-la-Vallee, France ; Jansson, J. ; Wing-Kin Sung

We investigate the computational complexity of inferring a smallest possible multilabeled phylogenetic tree (MUL tree) which is consistent with each of the rooted triplets in a given set. This problem has not been studied previously in the literature. We prove that even the very restricted case of determining if there exists a MUL tree consistent with the input and having just one leaf duplication is an NP-hard problem. Furthermore, we showthatthe general minimization problem is difficult to approximate, although a simple polynomial-time approximation algorithm achieves an approximation ratio close to our derived inapproximability bound. Finally, we provide an exact algorithm for the problem running in exponential time and space. As a by-product, we also obtain new, strong inapproximability results for two partitioning problems on directed graphs called Acyclic Partition and Acyclic Tree-Partition.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 4 )

Date of Publication:

July-Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.