Cart (Loading....) | Create Account
Close category search window
 

Haplotype Inference Constrained by Plausible Haplotype Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fellows, M.R. ; Charles Darwin Univ., Darwin, NT, Australia ; Hartman, T. ; Hermelin, D. ; Landau, G.M.
more authors

The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a given set of genotypes. This problem is important in practical fields such as the investigation of diseases or other types of genetic mutations. In order to find the haplotypes which are as close as possible to the real set of haplotypes that comprise the genotypes, two models have been suggested which are by now well-studied: The perfect phylogeny model and the pure parsimony model. All known algorithms up till now for haplotype inference may find haplotypes that are not necessarily plausible, i.e., very rare haplotypes or haplotypes that were never observed in the population. In order to overcome this disadvantage, we study in this paper, a new constrained version of HIP under the above-mentioned models. In this new version, a pool of plausible haplotypes H̃ is given together with the set of genotypes G, and the goal is to find a subset H ⊆ H̃ that resolves G. For constrained perfect phylogeny haplotyping (CPPH), we provide initial insights and polynomial-time algorithms for some restricted cases of the problem. For constrained parsimony haplotyping (CPH), we show that the problem is fixed parameter tractable when parameterized by the size of the solution set of haplotypes.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.