Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Designing Logical Rules to Model the Response of Biomolecular Networks with Complex Interactions: An Application to Cancer Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guziolowski, C. ; INRIA Rennes Bretagne Atlantique, Rennes, France ; Blachon, S. ; Baumuratova, T. ; Stoll, G.
more authors

We discuss the propagation of constraints in eukaryotic interaction networks in relation to model prediction and the identification of critical pathways. In order to cope with posttranslational interactions, we consider two types of nodes in the network, corresponding to proteins and to RNA. Microarray data provides very lacunar information for such types of networks because protein nodes, although needed in the model, are not observed. Propagation of observations in such networks leads to poor and nonsignificant model predictions, mainly because rules used to propagate information-usually disjunctive constraints-are weak. Here, we propose a new, stronger type of logical constraints that allow us to strengthen the analysis of the relation between microarray and interaction data. We use these rules to identify the nodes which are responsible for a phenotype, in particular for cell cycle progression. As the benchmark, we use an interaction network describing major pathways implied in Ewing's tumor development. The Python library used to obtain our results is publicly available on our supplementary web page.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 5 )