Cart (Loading....) | Create Account
Close category search window

Missing Intensity Interpolation Using a Kernel PCA-Based POCS Algorithm and its Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogawa, T. ; Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo, Japan ; Haseyama, M.

A missing intensity interpolation method using a kernel principal component analysis (PCA)-based projection onto convex sets (POCS) algorithm and its applications are presented in this paper. In order to interpolate missing intensities within a target image, the proposed method reconstructs local textures containing the missing pixels by using the POCS algorithm. In this reconstruction process, a nonlinear eigenspace is constructed from each kind of texture, and the optimal subspace for the target local texture is introduced into the constraint of the POCS algorithm. In the proposed method, the optimal subspace can be selected by monitoring errors converged in the reconstruction process. This approach provides a solution to the problem in conventional methods of not being able to effectively perform adaptive reconstruction of the target textures due to missing intensities, and successful interpolation of the missing intensities by the proposed method can be realized. Furthermore, since our method can restore any images including arbitrary-shaped missing areas, its potential in two image reconstruction tasks, image enlargement and missing area restoration, is also shown in this paper.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.