By Topic

Minimization of Monotonically Levelable Higher Order MRF Energies via Graph Cuts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karci, M.H. ; Dept. of Electr. & Electron. Eng., Middle East Tech. Univ., Ankara, Turkey ; Demirekler, M.

A feature of minimizing images of submodular binary Markov random field (MRF) energies is introduced. Using this novel feature, the collection of minimizing images of levels of higher order, monotonically levelable multilabel MRF energies is shown to constitute a monotone collection. This implies that these minimizing binary images can be combined to give minimizing images of the multilabel MRF energies. Thanks to the graph cuts framework, the mentioned class of binary MRF energies is known to be minimized by maximum flow computations on appropriately constructed graphs. With the aid of these developments an exact and efficient algorithm to minimize monotonically levelable multilabel MRF energies of any order, which is composed of a series of maximum flow computations, is proposed and an application of the proposed algorithm to image denoising is given.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 11 )