By Topic

An Online Control Algorithm for Application of a Hybrid ESS to a Wind–Diesel System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chad Abbey ; Department of Electrical Equipment, Hydro-Québec Research Institute, Varennes, Canada ; Wei Li ; Géza Joos

Energy storage systems (ESSs) can be applied to mitigate some of the negative impacts associated with a variable power generation source such as wind energy. The control of ESS power must be accomplished over numerous time frames to meet system objectives and respect ESS capacity constraints. This paper proposes a two-level ESS control structure for use with a wind-diesel system, which is suitable for online implementation. The control is developed to coordinate power delivered from the two ESS levels in order to minimize diesel fuel consumption and limit up/down rates of the diesel plant. Different control modes are evaluated by simulation, and a subset of the results are validated using a hardware-in-the-loop representation. The controller that combines all three functionalities-minimizing dump load, limiting intrahour diesel ramp rates, and maximizing ESS utilization-demonstrates superior performance as measured by defined metrics and is proven to work online.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 12 )