By Topic

Online Self-Reconfiguration with Performance Guarantee for Energy-Efficient Large-Scale Cloud Computing Data Centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Haibo Mi ; Sch. of Comput. Sci., Nat. Univ. of Defense Technol., Changsha, China ; Huaimin Wang ; Gang Yin ; Yangfan Zhou
more authors

In a typical large-scale data center, a set of applications are hosted over virtual machines (VMs) running on a large number of physical machines (PMs). Such a virtualization technique can be used for conserving power consumption by minimizing the number of PMs that should be turned on according to the application requirements to resource. However, the resource demands for VMs is dynamic in nature since the number of user requests the applications should handle is rapidly changing in practice. It is a great challenge to online reconfigure the VMs (i.e., optimize the number and the locations for the VMs) according to the dynamic resource demands. Especially for the emerging applications of large-scale data centers for cloud computing systems, existing approaches either fails to find a best configuration of VMs or cannot produce a result in an acceptable time. In this paper, we propose an online self-reconfiguration approach for reallocating VMs in large-scale data centers. It first accurately predicts the future workloads of the applications with Brown's quadratic exponential smoothing. Based on such a prediction, it adopts a genetic algorithm to efficiently find the optimal reconfiguration policy. The resource utilization of large-scale cloud computing data centers can thus be improved and their energy consumption can be greatly conserved. We conduct extensive experiments and the results verify that our approach can effectively switch off more unnecessary running PMs comparing with current approaches without a performance degradation of the whole system.

Published in:

Services Computing (SCC), 2010 IEEE International Conference on

Date of Conference:

5-10 July 2010