By Topic

A System-On-Chip Bus Architecture for Thwarting Integrated Circuit Trojan Horses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lok-Won Kim ; Electrical Engineering Department, University of California, Los Angeles ; John D. Villasenor

While the issue of Trojan ICs has been receiving increasing amounts of attention, the overwhelming majority of anti-Trojan measures aim to address the problem during verification. While such methods are an important part of an overall anti-Trojan strategy, it is statistically inevitable that some Trojans will escape verification-stage detection, in particular in light of the increasing size and complexity of system-on-chip (SoC) solutions and the increasing use of third-party designs. In contrast with much of the previous work in this area, we specifically focus on run-time methods to identify the attacks of a Trojan and to adapt the system and respond accordingly. We describe a solution including a bus architecture in which the arbitration, address decoding, multiplexing, wrapping, and other components protect against malicious use of the bus.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:19 ,  Issue: 10 )