By Topic

PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Burau, H. ; Forschungszentrum Dresden-Rossendorf e.V., Dresden, Germany ; Widera, R. ; Hönig, W. ; Juckeland, G.
more authors

The particle-in-cell (PIC) algorithm is one of the most widely used algorithms in computational plasma physics. With the advent of graphical processing units (GPUs), large-scale plasma simulations on inexpensive GPU clusters are in reach. We present an implementation of a fully relativistic plasma PIC algorithm for GPUs based on the NVIDIA CUDA library. It supports a hybrid architecture consisting of single computation nodes interconnected in a standard cluster topology, with each node carrying one or more GPUs. The internode communication is realized using the message-passing interface. The simulation code PIConGPU presented in this paper is, to our knowledge, the first scalable GPU cluster implementation of the PIC algorithm in plasma physics.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 10 )