By Topic

Maximally Stabilizing Task Release Control Policy for a Dynamical Queue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ketan Savla ; Massachusetts Institute of Technology ; Emilio Frazzoli

In this technical note, we introduce a model of dynamical queue, in which the service time depends on the server utilization history. The proposed queueing model is motivated by widely accepted empirical laws describing human performance as a function of mental arousal. The objective of this technical note is to design task release control policies that can stabilize the queue for the maximum possible arrival rate, assuming deterministic arrivals. First, we prove an upper bound on the maximum possible stabilizable arrival rate for any task release control policy. Then, we propose a simple threshold policy that releases a task to the server only if its state is below a certain fixed value. Finally, we prove that this task release control policy ensures stability of the queue for the maximum possible arrival rate.

Published in:

IEEE Transactions on Automatic Control  (Volume:55 ,  Issue: 11 )