By Topic

A High-Order Internal Model Based Iterative Learning Control Scheme for Nonlinear Systems With Time-Iteration-Varying Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chenkun Yin ; Advanced Control System Lab, School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China ; Jian-Xin Xu ; Zhongsheng Hou

In this technical note, we propose a new iterative learning control (ILC) scheme for nonlinear systems with parametric uncertainties that are temporally and iteratively varying. The time-varying characteristics of the parameters are described by a set of unknown basis functions that can be any continuous functions. The iteratively varying characteristics of the parameters are described by a high-order internal model (HOIM) that is essentially an auto-regression model in the iteration domain. The new parametric learning law with HOIM is designed to effectively handle the unknown basis functions. The method of composite energy function is used to derive convergence properties of the HOIM-based ILC, namely the pointwise convergence along the time axis and asymptotic convergence along the iteration axis. Comparing with existing ILC schemes, the HOIM-based ILC can deal with nonlinear systems with more generic parametric uncertainties that may not be repeatable along the iteration axis. The validity of the HOIM-based ILC under identical initialization condition (i.i.c.) and the alignment condition is also explored.

Published in:

IEEE Transactions on Automatic Control  (Volume:55 ,  Issue: 11 )