Cart (Loading....) | Create Account
Close category search window
 

A distributed and energy-efficient framework for Neyman-Pearson detection of fluctuating signals in large-scale sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Yang ; Dept. of Electr. & Comput. Eng., Lehigh Univ., Bethlehem, PA, USA ; Blum, R.S. ; Sadler, B.M.

To address the challenges inherent to a problem of practical interest - of Neyman-Pearson detection of fluctuating radar signals using wireless sensor networks, we propose in this paper a distributed and energy-efficient framework. Such framework is scalable with respect to the network size, and is able to greatly reduce the dependence on the central fusion center. It assumes a clustering infrastructure, and addresses signal processing and communications related issues arising from different layers. This framework includes a distributed scheduling protocol and a distributed routing protocol, which enable sensor nodes to make their own decisions about information transmissions, without requiring the knowledge of the network global information. In this framework, energy efficiency manifests itself at different network layers in a distributed fashion, and a balance between the detection performance and the energy efficiency is also attained.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 7 )

Date of Publication:

September 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.