By Topic

Network lifetime optimization in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hui Wang ; Div. of IT Convergence Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Agoulmine, N. ; Maode Ma ; Yanliang Jin

Network lifetime (NL) is a critical metric in the design of energy-constrained wireless sensor networks (WSNs). In this paper, we investigate a joint optimal design of the physical, medium access control (MAC) and routing layers to maximize NL of a multiple-sources and single-sink (MSSS) WSN with energy constraints. The problem of NL maximization (NLM) can be formulated as a mixed integer-convex optimization problem with adoption of time division multiple access (TDMA) technique. When the integer constraints are relaxed to take real values, the problem can be transformed into a convex problem and the solution achieves the upper bounds. We provide an analytical framework for the relaxed NLM problem of a WSN in general planar topology. We first restrict the topologies to the planar networks on a small scale, including triangle and regular quadrangle topologies. In this special case, we employ the Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the globally optimal NL, which take the influence of data rate, link access and routing into account. To handle larger scale planar networks, an iterative algorithm is proposed using the D&C approach. Numerical results illustrate that the proposed algorithm can be extended to the large planar case and its performance is close to globally optimal performance.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 7 )