By Topic

Joint synchronization and localization using TOAs: A linearization based WLS solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shouhong Zhu ; Lancaster Univ., Lancaster, UK ; Zhiguo Ding

Joint synchronization and localization using time of arrival (TOA) measurements is a very important research topic for many wireless ad hoc sensor network applications. For such TOA based joint synchronization and localization, the least square (LS) criterion and its corresponding solution have been shown to exhibit optimum estimation performance but generally at a very high computational complexity. Due to its importance and difficulty, in this paper we consider the issue how to approach the estimation performance of such LS solution at low computational complexity: We propose a low-complexity algorithm, which is based on the linearized equations from TOA measurements and applies a weighted least square (WLS) criterion in a computationally efficient way to closely approach the LS solution in estimation performance; Via analyzing and simulating its estimation performance we evidently demonstrate the proposed algorithm of its superior trade-off between estimation performance and computational complexity. The proposed algorithm is also applicable to similar application areas involving TOA base joint timing and positioning.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 7 )