Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Rao-Blackwellized Particle Filter for Joint Channel/Symbol Estimation in MC-DS-CDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Giremus, A. ; Dept. LAPS, Univ. Bordeaux 1, Talence, France ; Grivel, E. ; Grolleau, J. ; Najim, Mohamed

This paper deals with the joint estimation of Rayleigh fading channels and symbols in a MC-DS-CDMA system. Formerly, particle filtering has been introduced as a set of promising methods to solve communication problems. PF consists in simulating possible values of the unkwnown parameters and selecting the most likely candidates with regard to the received signal. Here, the Rao-Blackwellized particle filter (RBPF) is used to significantly decrease the variance of the channel/symbol estimates. Our contribution is twofold. Firstly, sinusoidal stochastic models have been shown to better represent the statistical properties of Rayleigh channels than classical autoregressive models. Therefore, the proposed RBPF estimator is based on these models which are expressed as the sum of two sinusoids in quadrature at the maximum Doppler frequency with autoregressive processes as amplitudes. The model parameters are unknown and need to be estimated. Since PFs are not well-suited to recover non-varying parameters, we propose to cross-couple the RBPF with a Kalman filter which makes use of the RBPF ouputs to sequentially update the parameters. Secondly, the choice of an efficient proposal distribution to simulate the particles is crucial for PF performance. We suggest using a suboptimal distribution which simulates likely values of the symbols at a reasonable computational cost.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 8 )